

TYPE – APPROVAL Based on tests witnessed

KEMA Nederland B.V. operating as an independent inspection body accredited according to the International standard EN 45004 hereby declares that the manufacturer

Wenzhou Yikun Electric Co., Ltd

at Wenzhou, China

has successfully type tested the product as mentioned below:

Metal-oxide surge arrester without gaps

Of type: YH 10W-24/75

The type test programme comprised all relevant type tests of the international standard

IEC 60099-4 Edition 1.2 (2001-12)

The tests were carried out strictly in accordance with the standard.

The tests were carried out in the laboratories of the manufacturer and were witnessed by KEMA inspectors.

This approval with number

02-31131TA

is issued based on the results of witnessed tests as stated in the inspection report 70240117-TDT 02-31131A issued by KEMA Nederland B.V.

The tests have been carried out on one single test object submitted by the manufacturer. The approval does not include an assessment of the manufacturer's production. Conformity of the production with the object tested is the responsibility of the manufacturer.

The approval is issued on

4-12-2002

The validity of this document expires five years after the date of issue of the inspection report or at the moment that modifications are introduced that might affect the performance of the equipment tested.

On behalf of KEMA Nederland B.V.

Managing Director KEMA T&D Testing Services

Product manager Inspection Services

Ir. P.G.A. Bus

The tests were carried out in the laboratory of the manufacturer who is therefore jointly responsible for the correctness of the results obtained. This approval applies only to the specific object tested from the particular place of manufacture. The responsibility for conformity of any object having the same designation with that tested rests with the manufacturer.

Copyright: Publication of this document is allowed. Only integral reproduction of the complete above mentioned report(s) is allowed without the written permission of KEMA.

70240117-TDT 02-31131A

02-12-03

Type testing on metal-oxide surge arrester without gaps, type YH10W-24/75, manufacturer Wenzhou Yikun Electric Co., Ltd., Wenzhou, China

INSPECTION REPORT

Report no. Client

Reference Concerning Date Place Object

Manufacturer

Type

70240117-TDT 02-31131A Wenzhou Yikun Electric Co., Ltd. 6F, West-South Side Chezhan Avenue Wenzhou, China agreement with ref. TDT 02-23735C type testing September 2 to October 23, 2002 Xi'an, China metal-oxide surge arrester without gaps YH10W-24/75 Wenzhou Yikun Electric Co., Ltd. Wenzhou, China

REQUIREMENTS

As per IEC 60099-4 Edition 1.2 (2001-12).

INSPECTION PROGRAMME

The programme was specified by KEMA. For the programme we refer to page 3.

SUMMARY AND CONCLUSION

The results obtained relate only to the work ordered and to the material inspected. The arrester withstood all type tests as per inspection program of page 3.

Author A.W. van Boetzelaer

This B-report consists of: 12 pages 2 annexes (24 pages)

ederland B.V. G. Klomp KEMA T&D Testing Services

Arnhem, 3 December 2002

^e Copyright: Publication or reproduction of the contents of this report in any other form than a complete copy to the letter, is not allowed

MATERIAL DATA

metal-oxide surge arrester without gaps

Туре		YH10W-24/75
Manufacturer		Wenzhou Yikun Electric Co., Ltd.,
		Wenzhou, China
Housing material		polymer
Rated voltage Ur	kV	24
Reference voltage (1 mA)	kV	≥ 24
Rated frequency	Hz	50
Nominal discharge current	kA	10
Continuous operating voltage Ucov	kV	19,5
Residual voltage at		Late the
- nominal discharge current 8/20 µs	kV	≤75
- switching current 30/60 µs	kV	≤ 58
 steep current 1/10 μs 	kV	≤ 81
Line discharge class		1
Power frequency versus time		1,15 Ur / 0,1 s
		1,1 Ur / 30 s
		0,9 Ur / 1200 s
Housing insulation level		
 lightning impulse 	kV	125
- power frequency	kV	55
Arrester mechanical load		
- torsional	Nm	60
- cantilever	N	147
Block dimensions		
- diameter	mm	40
- height	mm	20
Number of metal-oxide blocks		8
Rated short-circuit withstand current	kA	-
Drawing		6805.0

For the construction drawing of the transformer reference is made to annex A.

-2-

INSPECTION PROGRAM

The inspection program was specified by KEMA. All measurements and tests are in accordance with IEC 60099-4 (2001-12).

14.5	Kind of test	Standard	Clause
1	COMPLETE ARRESTER		
1.1	Reference voltage measurement	IEC 60099-4	8.1 a
1.2	Internal partial discharge test	IEC 60099-4	8.1 c
1.3	Mechanical tests	IEC 60099-4	
1.3.1	Moisture ingress test	IEC 60099-4	9.7.9
1.3.2	Weather ageing test	IEC 60099-4	9.7.10
2	ARRESTER HOUSING		
2.1	Lightning impulse voltage test	IEC 60099-4	7.2.6
2.2	Power frequency voltage test, wet	IEC 60099-4	7.2.8
3	ARRESTER SECTION		
3.1	Residual voltage test	IEC 60099-4	
3.1.1	Lightning impulse	IEC 60099-4	7.3.2
3.1.2	Switching impulse	IEC 60099-4	7.3.3
3.1.3	Steep current	IEC 60099-4	7.3.1
3.2	Long duration current impulse withstand test	IEC 60099-4	7.4.3
3.3	Operating duty test	IEC 60099-4	
3.3.1	Accelerated ageing test	IEC 60099-4	7.5.2
3.3.2	Conditioning	IEC 60099-4	7.5.4.1
3.3.3	Operating duty test, application of impulses	IEC 60099-4	7.5.4.2

-3-

PERSONS ATTENDING THE INSPECTION

Mr Dick Yu Mr Wang Tu-qiu Wenzhou Yikun Electric Co., Ltd. Wenzhou Yikun Electric Co., Ltd.

-4-

THE INSPECTION WAS CARRIED OUT BY

Mr André W. van Boetzelaer KEMA Nederland B.V.

PURPOSE OF THE INSPECTION

Purpose of the inspection was to verify whether the arrester complies with the specified requirements.

DESCRIPTION AND RESULTS OF THE TEST

0 INSPECTION OF THE TEST SET-UP

The tests were carried out in the laboratory of China National Centre for Quality Supervision and Test of Insulators and Surge Arresters in Xi'an, China, who is therefore jointly responsible for the correctness of the results obtained. The measuring devices and the test set-up were checked by KEMA and where necessary calibrated.

-5-

Result

The inspection results did not give rise to remarks

1 COMPLETE ARRESTER

1.1 Reference voltage measurement

The reference voltage of the arrester is defined as the power frequency voltage applied to the arrester when the resistive component of the current flowing through the arrester is 1 mApeak. The reference voltage should be greater than the value as stated in the material data.

The reference voltage measurement was carried out on three complete arresters. The results of this measurement are summarised in annex B.

Result

The test results fulfilled the requirements.

1.2 INTERNAL PARTIAL DISCHARGE TEST

The internal partial discharges were measured when applying a power frequency voltage to the arrester.

The voltage was first raised to the rated voltage, held for 10 s and then decreased to 1,05 times the continuous operating voltage at which level the partial discharges were measured.

-6-

The partial discharge level should be below 10 pC.

The partial discharge measurement was carried out on three complete arresters. The results of this measurement are summarised in annex B.

Result

The test results fulfilled the requirements.

1.3 Mechanical tests

1.3.1 MOISTURE INGRESS TEST

One sample of a complete arrester was submitted to the following test sequence:

- initial measurements: partial discharge watt losses and residual voltage measurement
- terminal torque test at rated torque
- thermo mechanical test in four directions with rated cantilever load at temperatures of respectively +60 °C, -25 °C, +45 °C and -40 °C
- water immersion test in boiling water with NaCl for 42 hours
- visual inspection of the sample
- verification tests: partial discharge watt losses and residual voltage measurement.

The results of this test are summarised in annex B.

The acceptance criteria are:

- no mechanical change
- increase of watt losses should be less than 20%
- partial discharges < 10 pC at 1,05 Ucov
- change of residual voltage should be less than 5%.

Result

The test results fulfilled the requirements.

1.3.2 WEATHER AGEING TEST

One ratio arrester with an Ucov of 13,6 kV and an equivalent creep age distance was specially prepared for this test. This sample was submitted to the following test sequence:

-7-

- initial measurements: reference voltage and partial discharge measurement
- test series A: 1000 hours at a constant power frequency voltage of Ucov (13,6 kV) in a climate room sprayed with salt water and a flow rate of 0,4 ± 0,1 l/h/m³
- verification tests: reference voltage and partial discharge measurement.

The results of this test are summarised in annex B.

The acceptance criteria are:

- change of reference voltage should be less than 5%
- partial discharges < 10 pC at 1,05 Ucov.

Result

The test results fulfilled the requirements

2 ARRESTER HOUSING

2.1 Lightning impulse voltage test

One empty housing was subjected to a standard lightning impulse voltage dry test with 15 impulses of positive polarity and 15 impulses of negative polarity and a crest value of 135 kV.

The results of this test are summarised in annex B.

The acceptance criteria is:

- not more than two external disruptive discharges per 15 impulses.

Result

The test results fulfilled the requirements.

2.2.1 POWER FREQUENCY VOLTAGE TEST, WET

One empty housing was tested with a power frequency of 70 kV, 50 Hz during 1 minute under artificial rain in accordance with IEC 60060-1 (1989). The results of this test are summarised in annex B.

The acceptance criteria is:

- no external disruptive discharge during the test.

Result

The test results fulfilled the requirements.

3 ARRESTER SECTION

3.1 Residual voltage test

All residual voltage tests were carried out on the same three arrester sections. The rated voltage of one section is 3 kV and consisted of one metal-oxide block. By multiplying the measured residual voltage by the number of sections per arrester the equivalent residual voltage of the arrester was calculated.

-8-

-9-

3.1.1 LIGHTNING IMPULSE

Three lightning current impulses with a waveform of $8/20 \ \mu$ s with a peak value of respectively 5, 10 and 20 kA, this is respectively 0,5, 1 and 2 times the nominal discharge current, were applied to each of the three sections. The maximum value of the residual voltage was recorded.

The results of this test are summarised in annex B.

The acceptance criteria is:

the equivalent residual voltage of the arrester at nominal discharge current (10 kA) should be below 75 kV.

Result

The test results fulfilled the requirements.

3.1.2 SWITCHING IMPULSE

One switching impulse with a waveform of $30/60 \ \mu$ s and a peak value of 500 A was applied to each of the three sections. The maximum value of the residual voltage was recorded.

The results of this test are summarised in annex B.

The acceptance criteria is:

 the equivalent residual voltage of the arrester at nominal discharge current should be below 58 kV.

Result

The test results fulfilled the requirements.

3.1.3 STEEP CURRENT

One steep current impulse with a waveform of $1/10 \ \mu$ s and a peak value of 10 kA was applied to each of the three sections. The maximum value of the residual voltage was recorded.

-10-

The results of this test are summarised in annex B. The acceptance criteria is:

 the equivalent residual voltage of the arrester at nominal discharge current should be below 81 kV.

Result

The test results fulfilled the requirements.

3.2 Long duration current impulse withstand test

The long duration current impulse withstand test was carried out on three arrester sections. The rated voltage of one section is 3 kV and consisted of one metal-oxide block. The line discharge class is 1.

Before this test the lightning impulse residual voltage at nominal discharge current and the switching impulse residual voltage at 125 A was measured. The latter was used for calculating the energy, which should be injected into the sample during every long duration impulse. This energy was determined as 3,33 kJ. The duration of the impulse is 2000 μ s.

Each sample was tested with 18 long duration impulses divided in 6 groups. Between each impulse there is a pause of 50 to 60 s and between each group the samples are cooled down to ambient.

Following the test and after the samples are cooled down to ambient the lightning impulse residual voltage at nominal discharge current was measured.

The results of this test are summarised in annex B.

The acceptance criteria is:

- no evidence of puncture, flashover or other significant damage
- change of residual voltage should be less than 5%.

Result

The test results fulfilled the requirements.

3.3 Operating duty test

The operating duty test was carried out on three arrester sections. The rated voltage of one section is 3 kV and consisted of one metal-oxide block. Successively the following three tests were carried out.

3.3.1 ACCELERATED AGEING TEST

This test is designed to determine the elevated test voltages and to decide whether new or aged samples shall be used in the operating duty test.

The three samples were subjected to a long duration test with a corrected Ucov of 2,91 kV during 1000 hours. During the whole test duration the resistor power losses are measured. Taken into account the results of these loss measurements and using the calculation method described in the IEC standard the choice between aged and new samples for the following tests has to be made.

3.3.2 CONDITIONING

The conditioning test was made on three new same samples. Before the conditioning test the lightning impulse residual voltage at nominal discharge current was determined. Following this the three samples were exposed to 20 lightning current impulses of 8/20 μ s with nominal discharge current. The impulses were applied while the sample was energized at 1,2 x Ucov. The 20 impulses are applied in four groups of 5 impulses. The interval between each impulse was 50-60 s and between each group 25-30 min.

3.3.3 OPERATING DUTY TEST, APPLICATION OF IMPULSES

The operating duty test is made on the same samples as during conditioning, above. The samples were placed in a housing, which is thermal equivalent to the housing of a complete arrester.

All three samples were tested with two high current impulses of 100 kA, 4/10 μ s. Before the application of the second impulse the samples were pre heated to a temperature of 60 °C.

Immediately after the second application of the high current impulse, a power frequency of Ur during 10 s and Ucov during 30 min. was applied. During these 30 min. the power dissipation of the sample was measured.

Following this and after the samples are cooled down to ambient the lightning impulse residual voltage at nominal discharge current was measured.

The results of this test are summarised in annex B.

The acceptance criteria is:

- the measurement of the losses during the voltage application did not show thermal instability
- change of residual voltage should be less than 5%
- no evidence of puncture, flashover or other significant damage.

Result

The test results fulfilled the requirements

		$\frac{1}{2}$
		6
15 0233-87 # £ 12 13 026770-84 # # W12 12 02773-85 # # # W12 11 626570-84 # # W12 12 02773-85 # # # # W12 11 6205.1.1-65 F # # 10 6205.1.1-5 # # # 11 6205.1.1-2 # # # 10 6205.1.1-2 # # # 5 6205.1.1-2 # # # 5 6205.1.1-2 # # # 5 6205.1.1-2 # # # 5 6205.1.1-2 # # # 5 6205.1.1-2 # # # 4 6301.1.1-2 # # # 5 6205.1.1-1 # # # 2 6205.1.1-2 # # # 1 6205.1.1-2 # # # 2 6205.1.1 # # # 2 6205.1.1 # # # 2 6205.1.1 # # # 3 6205.1.1 # # # 4 # # # # # </td <td></td> <td>10 11 12 114 15</td>		10 11 12 114 15
	ANI	15
1C-18/4511 0.003 0.005 1C-18/4511 0.004 0.056 1C-18/4511 0.014 0.056 1C-18/4511 0.022 0.115 年末夏素年度 0.024 0.024 (11)22.2美基A集 0.021 0.75 200 0.122 1.116 00228 0.122 1.216 00228 0.121 1.15 00228 0.115 9.8 00228 0.115 9.7 2023 0.116 0.115 00238 0.011 9.8 00238 0.013 0.66 01018/37 0.015 8.8 101018/371 1.16 7.4 241/1 1.01/4 1.16 2427 111 6805.0 1.1 6805.0 <td>ANNEX A, page 1</td> <td></td>	ANNEX A, page 1	

ANNEX & , pag 1

No. WB-091-2002

No.0224

(99)量认(国)字(A0196)号

国质监认字(059)号

国家绝缘子避雷器质量监督检验中心

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS

检验报告 TEST REPORT

ANNEX 15 , page 2

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

NO.WB-091-2002

Page 1 of 22

Polymeric Housed Metal Oxide Surge Arrester Without Gaps Venzhou Yikun Electric Co.,Ltd. Wang Tu-qiu Hexiang road, Aojiang, Pingyang , Wenzhou hejiang ,China 325401 rester:3,Ratio arrester:1,	Type Trade Mark Manufacturer Classification Telephone Fax.	YH10W24/75 YI KUN Wenzhou Yikun Electric Co.,Ltd. Type Test 86057763654819				
Without Gaps Venzhou Yikun Electric Co.,Ltd. Wang Tu-qiu Hexiang road, Aojiang, Pingyang , Wenzhou hejiang ,China 325401	Manufacturer Classification Telephone	Wenzhou Yikun Electric Co.,Ltd. Type Test 86—0577—63654819				
Co.,Ltd. Wang Tu-qiu Hexiang road, Aojiang, Pingyang , Wenzhou hejiang ,China 325401	Classification Telephone	Co.,Ltd. Type Test 86—0577—63654819				
Hexiang road, Aojiang, Pingyang , Wenzhou hejiang ,China 325401	Telephone	86-0577-63654819				
Pingyang , Wenzhou hejiang ,China 325401						
hejiang ,China 325401	Fax.	96 0577 62620100				
rester: 3 Ratio arrester: 1		86-0577-63639100				
rester.o, nauo arrester.r,	Samples Received Date	2002.08.30				
section:25,Housing:1.	Test Date	2002.09.02~2002.10.22				
Serial Number Arrester:001 \sim 003; section:1 \sim 25, Ratio arrester:007, Housing :4.						
Test Judge IEC 60099-4:2001-12 Metal-oxide surge arresters without gaps for a.c. systems						
l test items see page 2 of	this report.					
This surge arresters pass all 8 items of type test and is deemed satisfactory to meet standard specifications a specifical specifica						
 The arrester height is: 304 mm, Housing is searlet, its chameter is 58 mm; diam tent Asceds is 105 mm. The size of resistors is \$40 × 20mm. 						
	The arrester height is 58 mm; diam tent	The arrester height is 304 mm, Housing is 58 mm; diam tent Ascets is 105 m				

Approved: 李凡 Checked: 在我了Editor: 那個 Test-leader: 武文氏

WB-091-2002

page 2 of 22

N	(m T)	Type Test Items		-
No.	Test Items	Req.	Test Data	Result
1	test Partial discharge		28 kV	passed
2			2.3~3.4 pC	passed
		8/20μ s U _{10kA} ≤75 kV	72.6 kV	
3	Residual voltage test	1/10µ s U _{10kA} ≤81 kV	77.4 kV	passed
		30/60µ s U _{500A} ≤58 kV	55.4 kV	
4	Long duration current impulse withstand test	rent impulse Class 1 line discharge		
5	Operating duty test 4/10µ s, 100 kA		passed	passed
6	Insulation with- -stand test Lightning impulse withstand 170kV 15 times positive and negative; Power frequence voltage (wet) withstand70kV, 1 min		passed	passed
7	Moisture ingress test	Withstand 60±5°C ~ -40±5°C heat- cool 2 times, boiling 42h in boiled 0.1%Nacl water; immering 50°C water, test within 8 h after take out	passed	passed
8	Weather geing + test	Applied Uc 1000 hours in salt fog	passed	passe

Test Conclusion: Satisfied.

CNACL No. 0204

WB-091-2002

page 3 of 22

1 Power Frequency Reference Voltage Test

No.	001	002	003	Req.
A.C. Reference voltage at 1mA (kV, peak/ $\sqrt{2}$)	28	28	28	≥24

Test Conclusion: Satisfied.

2 Partial Discharge Test

No.	Applied voltage kV(r.m.s)	P.D. Value pC
001	20.5	2.3
002	20.5	3.4
003	20.5	2.5
Req.	20.5	≤10

Test Conclusion: Satisfied.

3 Residual Voltage Test

3.1 8	$3/20\mu s$	lightning impul	se current	residual	voltage	(see Fig1~Fig3)
-------	-------------	-----------------	------------	----------	---------	-----------------

	No.	Residual	voltage of kV	sections	Equivalent residual voltage of arresters	I Reo	
		5 kA	10 kA	20 kA	at 10 kA kV	kV	
Γ	1	8.40	9.07	10.1			
Γ	8	8.34	9.04	10.17	72.6	≤ 75	
Γ	16	8.33	8.99	8.99 10.11			
3.2	30/60µ s switching impulse current res			rrent resid	lual voltage (see Fig4	~Fig6)	
ſ	No. sections at 500A			ent residual voltage of ers at 500A kV	Req. kV		
F		kV		arresu		KV.	
	1	6.93			≤ 58		
	8	6.84					
Γ	16	6.86		1			
3.3	1/10µ s steep impulse current residual voltage (see Fig7~Fig9)						
Γ	No.	Residual voltage of sections at 10kA kV		Residual voltage of arresters at 10kA kV		Req. kV	
T	1		.67	1	1.4		
Γ	8	9	9.57		77.4		
_				-		≤ 81	

Test Conclusion: Satisfied.

9.56

16

A

WB-091-2002

page 4 of 22

	No.		7	17	25	Req.
U10kA ,bef	ore	kV	9.04	9.03	9.14	1
U _{125A}		kV	6.44	6.46	6.53	1
Time		μs	2020	2020	2020	2000
1st.	Current	A	248	252	250	1
	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.40	3.46	3.43	3.33
1	Current	A	250	257	257	1
2nd.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.43	3.52	3.52	3.33
	Current	Α	252	255	248	1
3th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.46	3.50	3.40	3.33
	Current	A	250	262	244	1
4th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.43	3.59	3.35	3.33
	Current	Α	253	257	251	1
5th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.47	3.52	3.44	3.33
	Current	Α	262	253	248	1
6th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.59	3.47	3.41	3.33
	Current	Α	248	250	252	1
7th.	Voltage	kV	6.79	6.79	6.79	/
	Energy	kJ	3.40	3.42	3.46	3.33
	Current	Α	250	249	248	1
8th.	Voltage	kV	6.79	6.79	6.79	1
Constanting of the	Energy	kJ	3.43	3.42	3.4	3.33
	Current	Α	255	260	246	/
9th.	Voltage	kV	6.79	6.79	6.79	/
	Energy	kJ	3.50	3.56	3.37	3.33
	Current	Α	252	248	253	1
10th.	Voltage	kV	6.79	6.79	6.79	1
-	Energy	kJ	3.46	3.41	3.47	3.33
Sector.	Current	A	248	253 -	- 245	1
11th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.41	3.47	3.36	3.33

ANNEXB, page 6

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 5 of 22

B0912	002				page 50	1 22
	No.		7	17	25	Req.
	Current	A	250	249	247	1
12th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.43	3.42	3.39	3.33
	Current	A	248	257	252	1
13th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.40	3.52	3.46	3.33
	Current	A	252	250	246	1
14th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.46	3.42	3.37	3.33
15th.	Current	A	253	255	250	1
	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.47	3.50	3.42	3.33
	Current	Α	250	257	251	/
16th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.43	3.52	3.44	3.33
	Current	Α	253	249	250	/
17th.	Voltage	kV	6.79	6.79	6.79	/
	Energy	kJ	3.47	3.42	3.43	3.33
	Current	А	255	250	245	/
18th.	Voltage	kV	6.79	6.79	6.79	1
	Energy	kJ	3.50	3.43	3.36	3.33
Checkin	g samples		all right	all right	all right	all right
U _{10kA} ,	after	kV	8.97	8.97	9.13	1
Varity of U10kA %			-0.8	-0.7	-0.1	≤5

Test Conclusion: Satisfied...

5 Operating duty Test

- 5.1 Accelerated ageing test
- 5.1.1 The parameters of arrester

Ur=24 kV(r.m.s) ; Uc=19.5 kV(r.m.s) ; $U_{10kA} \le 75 \text{ kV}_{\circ}$

5.1.2 The parameters of test

	No.	11	12	13	Req.
Uct	kV(r.m.s)	2.91	2.91	2.91	2.62
Time	h	1000	1000	1000	1000

WB-091-2002

page 6 of 22

3 The data of test		page 0 01 22				
Power losses w No. Time	11	12	13	Temperature °C		
2002.09.03 18:00	1.164	1.100	1.106	116		
2002.09.04 08:56	1.105	1.054	1.096	115		
2002.09.04 12:00	1.030	0.987	1.032	116		
2002.09.05 10:01	1.093	1.031	1.116	115		
2002.09.06 08:10	1.155	1.072	1.194	116		
2002.09.06 15:30	1.020	0.946	1.042	115		
2002.09.07 10:10	1.030	0.948	1.047	115		
2002.09.08 10:30	1.025	0.952	1.055	115		
2002.09.09 09:30	1.020	0.957	1.062	115		
2002.09.10 08:15	1.021	0.973	1.068	115		
2002.09.11 11:10	1.040	0.951	1.072	115		
2002.09.12 08:10	1.017	0.945	1.068	115		
2002.09.13 08:25	1.021	0.951	1.059	115		
2002.09.14 08:30	1.027	0.934	1.069	115		
2002.09.15 10:00	0.989	0.927	1.050	116		
2002.09.16 08:00	1.000	0.922	1.056	116		
2002.09.17 09:30	0.982	0.914	1.060	115		
2002.09.18 08:15	0.962	0.905	1.045	115		
2002.09.19 08:05	0.961	0.893	1.039	115		
2002.09.20 09:00	0.981	0.905	1.042	115		
2002.09.21 09:00	0.962	0.896	1.029	116		
2002.09.22 09:00	0.951	0.883	1.023	115		
2002.09.23 08:00	0.942	0.877	1.018	115		
2002.09.24 08:15	0.955	0.899	1.040	115		
2002.09.25 08:10	0.922	0.855	1.002	115		
2002.09.26 08:30	0.935	0.869	1.005	116		
2002.09.27 08:00	0.925	0.865	1.000	115		
2002.09.28 08:20	0.965	0.897	1.044	115		
2002.09.29 08:10	0.960	0.904	1.043	115		
2002.09.30 11:00	0.962	0.866	1.020	115		
2002.10.01 10:10	0.915	0.856	1.009	116		
2002.10.02 08:00	0.920	0.861	1.012	116		
2002.10.03 09:05	0.950	0.870	1.020	115		
2002.10.04 09:00	0.930	0.868	1.030	115		
2002.10.05 08:10	0.938	0.870	1.034	116		
2002.10.06 08:30	0.936	0.986	1.030	115		
2002.10.07 08:05	0.935	0.965	1.028	115		
2002.10.08 08:05	0.930	0.961	1.025	115		
2002.10.09 08:30	0.928	0.952	1.010	116		

ANNEX 15 , page 8

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

	1-2002			10	page 7 of 22	
Power 1 Time	osses w No.	11	12	13	Temperature ℃	
2002	2.10.10 08:05	0.920	0.842	1.008	116	
2002	2.10.11 09:05	0.940	0.860	1.028	115	
2002	2.10.12 08:30	0.941	0.866	1.033	115	
2002	2.10.13 08:30	0.941	0.868	1.037	115	
2002	2.10.14 08:30	0.944	0.872	1.040	115	
2002	2.10.15 09:00	0.944	0.872	1.041	115	
2002	2.10.15 09:05		s	top test		
	Pict	1.164	0.000	1.100	_	
	P2ct	0.944	0.872	1.041	P2ct<1.1×P3ct P2ct <p1ct< td=""></p1ct<>	
	P3ct	0.915	0.842	0.987		
High cu	rrent impulse operati	ing duty te	est (wave s	shape see	Fig13~Fig21)	
	No.	9.01 9.00 3.0 3.0 2.71 2.71		14	21	
	,U _{10kA} , before kV			9.06	9.07	
Ur	kV			3.0	3.0	
Uc	kV			2.71	2.71	
Conditio	Applied1.2Uc=3.2	5kV, 8/2	Ομ s, In =	10 kA, 50	0° before peak	
n test	Times	20		20	20	
4/10µ s high	1st. current kA	92.8		92.8	92.8	
current	Heated to 60 °C					
impulse	2nd. Current kA	94.4	94.4 96.0		96.0	
-	Applied power	frenquen	cy voltage	within 70	ms	
Ur	kV	3.3		3.3	3.3	
Power los	ses (max) at Ur W	56.0		66.0	55.0	
Applied U	c kV	2.71		2.71	2.71	
Power losses	1 min	12.2		20.3	6.60	
at Uc	15 min	1.130)	1.402	0.773	
W	30 min	0.867		1.110	0.620	
Checking	samples	all righ	nt a	ull right	all right	
8/20µ s,	U _{10kA} ,after kV	9.20		9.15	9.18	
	U _{10kA} %	2.1		A REAL PROPERTY AND A REAL		

Test Conclusion: Satisfied.

, have y

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 8 of 22

6 Housing Insulation Withstand Test(wave shape see Fig22~Fig23)

6.1 Lightning impulse voltage withstand test

No.		eq. V	Adj. kV	Test Value kV	Withstand Times	Result
	(+)	170	164.6	150.3~193.5	15	passed
4	(-)	170	164.6	159.4~175.2	15	passed

 $P=966 \times 10^2 Pa$, $t_{dry}=17 °C$, $t_{wet}=14 °C$, K=0.968;

6.2 Power frequency voltage insulation withstand test

 $P=966 \times 10^2 Pa$, $t_{dry}=16.5$ °C, $t_{wet}=13.5$ °C; $t_{water}=14$ °C.

specific resistance of rain $\rho_{20}=91.3 \ \Omega \cdot m$.

rainfall: horizon=1.2 mm/min, verticality=1.3 mm/min.

K_(wet)=0.993

No.	Rek	100	Adj. kV	Test Value kV	Keeping time min	Result
4	wet	70	69.5	70	1	passed

Test Conclusion: Satisfied.

7 Moisture ingress test

7.1 Terminal torque test

M=60 N·m, withstand 30 s

7.2 Thermomechanical test

F1=147 N, F2 =8 N, F =(F1+F2) =155 N

No.	Test time	Temprature °C	Applied angle degrees	Times h	Bend load N
	4th.Sep 11:15~ N:55	58~62	0	8	
003	5th.Sep 08:00~13:10	-23~-27	180	8	155
	6th.Sep 08:00~08:45	43~47	270	8] 155
	7th.Sep 08:00~14:15	-38~-42	90	8	
Req.	24h×4	(60 ± 5) (-40 ± 5)	0~360	≥8	155

WB-091-2002

page 9 of 22

7.3 Water immersion test(wave shape see Fig24~Fig25)

No.	Boiling	Parti valı		harge pC	Pov	wer los W	ses	Residual v at 6k kV		Contraction of the second	
	h	before	after	var.	before	after	var. %	before	efore after	var. %	
003	42	2.3	1.0	-1.3	1.04	1.00	-3.8	71.3	69.2	-2.9	
Req.	42	<	10	≤10	1	'	≤20	1		≤5	

Test Conclusion: Satisfied.

8 Weather ageing test

fog room: 4 m^3 temperature of fog room : $22^{\circ}C \sim 24^{\circ}C$ water speed: $2.2 \sim 2.4 \text{ L/m}^3 \cdot \text{h}$ NaCl in water : 5 kg/m^3 date of test: 2002.09.03 ~ 2002.10.15

No.	Uc	Creep distance	Time	10-construction	r freng voltag kV	uency	Partial disch pC		narge	
NO.	kV	mm	h	before	after	var. %	before	after	var.	
007	13.6	420	1008	20.0	20.0	0	3.5	3.2	-0.3	
Req.	13.6	1	≥1000		1	≤5	\$	10	≤10	

Test Conclusion: Satisfied.

Testor: Zhang Ji-ning, The Y, Ting, Zhu Jia-xi, Shi Rong Sang Jian-ping Su Miao, Meng Fan-sheng, Hou Yu-jun, Jin Qi-xue

WB-091-2002

page 10 of 22

8/20µs, U10kA Fig2 8#

ANNEX5, page 12

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 11 of 22

ANNEX 5, page 13

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 12 of 22

 $30/60\mu s$, U_{500A}

Fig6 16"

30/60µs, U_{500A}

ANNEX 1), page 15

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 13 of 22

Fig8

1/10µ s, U10kA

ANNEA U, page D

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 14 of 22

Fig9

16

 $1/10 \mu s$, $U_{10 k A}$

Fig10 7[#]

Long Duration Current 1st.

WB-091-2002

page 15 of 22

Long Duration Current 1st.

Fig12 25"

Long Duration Current 1st.

AININEAD, page 14

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 16 of 22

Fig13 4

4" conditioning test 10kA

Fig14 14"

conditioning test 10kA

WB-091-2002

page 17 of 22

conditioning test 10kA

Fig16 4[#] 4/10µ s, 92.8kA,1st.

ANNEXD , page 19

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 18 of 22

Fig17 4[#] 4/10µs ,94.4kA,2nd.

WB-091-2002

5.2

page 19 of 22

Fig20 21[#] 4/10µ s, 92.8kA,1st.

ANNEXU, page 2/

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 20 of 22

Fig21 21[#] 4/10µ s ,96.0kA,2nd.

Fig22 4[#] front wave of 1.2/50µ s Impulse voltage

ANNEX 3 , page 22

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 21 of 22

ANNERD , page ()

CHINA NATIONAL CENTRE FOR QUALITY SUPERVISION AND TEST OF INSULATORS AND SURGE ARRESTERS TEST REPORT

WB-091-2002

page 22 of 22

End

KEMA T&D TESTING SERVICES

KEMA HIGH POWER & HIGH VOLTAGE LABORATORIES Utrechtseweg 310, 6812 AR Arnhem P.O.Box 9035, 6800 ET Arnhem The Netherlands Telephone +31 26 3 56 29 91 Telefax +31 26 3 51 14 68 E-mail hpl@kema.nl hvl@kema.nl

KEMA-POWERTEST, INC. 4379, County Line Road, Chalfont, PA 18914, USA Telephone +1 215 822 4231 Telefax +1 215 822 4267 E-mail kemakpt@comcat.com